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ABSTRACT
=" Linear and nonlinear studies are made of two-dimensional free-surface
flows under gravity, in which a disturbance is caused to an otherwise-uniform
stream by a distribution of pressure over the free surface. In general, such
a disturbance creates a system of trailing waves. However, there are special
disturbances that do not, and some categories of such disturbances are

discussed here. This work has potential applications to design of splash-less

ship bows.
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SIGNIFICANCE AND EXPLANATION

One of the important problems of modern ship hydrodynamics concerns the
flow at the extreme bow. In particular, reduction and, if possible,
elimination of the splash, and resulting splash drag is of great interest.

In the present paper linea; and nonlinear studies are made of two-
dimensional flows, in which an otherwise uniform stream is disturbed by a
distribution of pressure over the free surface. It is found that some
families of pressure distributions do not generate waves. These wave-less

flows generate candidate shapes for splash-less bows.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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i

b Yo d
A One of the important problems of modern ship hydrodynamics <
v' *
-a concerns the flow at the extreme bdow. In particular, :
-, prediction and, 1f possible, elimination of the splash, and
daa resulting splash drag component 1{s of great interest. It
B~
"::‘;‘ appears (c.f. refs [1,2]) that one of the roles of a bulbous i
%8 L
A .
\\: bow 1s to effect just such an elimination (or at least o
WO

s reduction in magnitude) of the splash drag under suitable
1 ¢

A conditions of speed and loading. '
. 9
o '
By ;
s
be : In previous research [3,4] the present authors have
A considered fundamental questions associated with a
N A

‘ﬁ -

..:. two-dimensional model for such bow flows. That work suggested
o . that, for & given bow shape, splash-free solutions may not

ad :

o

. exist. However, only special (specifically non-bulbous) bow
‘;::1 shapes wvere used in the previous studies. The possibility
‘.1

:.‘-: exists that, by constidering suitable families of bow shapes,
» .\

-.~0

"o one could identify a special shape having the splash-free
o

property. In the 1linearised case, such shapes have been

)

D

-.$: considered by Schmidt [S5].
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:}: _In the present article, we approach this problem in an
': indirect manner. If such a special bow exists, and {({f one
\4 co-pu.te. the pressure exerted on it by the water, then one can
.;:\:: replace the original body by an artificial prescribed pressure
:Sg ) distribution over the free-surface. Conversely, if one starts
) with a given free-surface pressure dtltru.mtion. . the
\'3,'.; streamlines generated will define a candidate bow shape.

& -‘

-:": The obvious d.ifficulty with this approach 1is that, 1in
+ . general, such pressure distributions generate a train of waves
3

‘3 downstream, and we are (ultimately) looking for flows that are
E} not only splash-free, but also wave-free. However, it is well
o known (c.f.[6), p.404) that in two dimensione there exist
f special pressure distributions whose downstream wave amplitude
.:f is zero, and our main purpose here is to enumerate and discuss
:"‘: such special c..:el.

-

{.: In particular, suppose we consider a family of pressure
E: distributions that vanish for x > 0, and tend to a positive
WO constant value as X = -w, This pressure will in general
\J correspond to a semi-infinite "stern"” profile having fintite
‘;’E draft at x = -, and producing a train of waves downstream at
‘d - X » +0o, Within this family there may be one or wmore special
-_—: members for which the downstream wvave amplitude is zero. Since
E;; there are no waves, the radiation condition does not apply to
...' such special solutions, and the flow direction can be reversed,
i‘ s0o generasting a semi-infinite 'bow' flow. This flow possesses
- neither a splash nor (upstream) vaves, and hence is precisely
.': of the type desired.
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: The above discussion proceeds without any consideration of '
(. . l1inearisation. However, few demonstrations have been made of i
:'-;. non-linear free-surface flows without downstream waves, and it i
j‘::_: is not entirely obvious that they exist, although the numerical i
::':: evidence (7,8]) is strong, and the approximate non-linear theory !

of Tulin [9) can be interpreted as providing indirect analytic

confirmation. . ‘

Here we first discusse the linearised case in some detail,

H

::: enumerating some families of wave-less pressure distributions,
’Eﬁz and computing the corresponding free-surface contour. This
"1: contour can then be replaced by a fixed body, but only as an
approximation when that body has a small stream-wise slope
':’_}.'j everyvhere, in order that the generating pressure can be small
.:i'; to justify linearisation. Some of the results suggest bulbous
' - character, . but of course a true buldb can never be attained with
";: ' such a restriction on the body's slope. These linear results
:;;3 can be viewed as an inverse re-formulation of the theory of
jj Schmidt [S5].
e
:“‘E We then solve the non-linear problem by a perturbation
'::3 procedure, in which the linearised solution is viewed as the
2 firet term in an asymptotic expansion with respect to some
,'.: small parameter «. Thus, @ messures either (and both) the
5:55:. body's streamwvise slope and the size of the pressure
E’:::; distribution that generates 1{¢t. In principle, providing we
- . adopt a careful inverse formulation with the velocity potential

as independent variable, any number of terms in the asymptotic

expansion in powers of e« can be computed, for continuous

pressure distributions. We provide here some 2nd-order




numerical results, and higher-order results seem to be not hard

to obtain. This is, however, not true 1f the {nput pressure
possesses step-function discontinuities, because singularities

\}\ occur whose degree increases with the power of ¢.

An alternative approach to non=linear free-surface
. solution ie vis exact inverse methods, c.f. [10,11]. That is,
\Af it is possible to write doewn a specification for the flow in

8N which all requisite equations (including the non-linear

N free-surface condition) are satisfied exactly. This has not in
j the past proved a very useful technique because of the
THhEY unrealistic nature of the streamlines generated. However, the
V) extra freedom obtained by allowing a non-z2ero free-surface
jiﬁ pressure, enables us to get & 1little closer to practical
*ﬂj applicablility. The price paid for this is that we cannot
= expect the inversely-obtained pressure distributions to be
;\? exactly :;ro snywvhere on the free surface. The best we can do
Sp is to cause the pressure to be very small over a portion of the

Mol streswmline that is a candidate for a true “free" surface.
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Weak Pressure Distributions

2.

Suppose that the only disturbance to a8 uniform stream of
unit wmagnitude in the <+x-direction consists of a small
departure P(x) from the equilibrium atmospheric value of the
free-surface pressure. If P(x) is sufficiently small, and wve

make the wusual assumptions (121} of classical linearised

water-wave theory we find (c.f. {13]) that the free-surface
elevation is y = n(x), where

n(x) = «p(-w) *l P'(€£)K(x-€) dE. (2.1)

The kernel function K(x) is the wave elevation due to a untt-

step pressure, namely

1 2cos x=-1, x > O
K(x) = = ;f(x) + [ (2.2)
1] o x < 0,

f(x) = Ci([x]|)ein x - s1(l{x])cos x sgn x €2.3)

ie the odd auxiliary function ([14}), p.232) of the sine and

cosine integrals.

Note that we have non~-dimensionalised so that not only is
the free stresm of unit magnitude, but the acceleration of
gravity and the density are both also of unit magnitude. In

effect, we have chosen a length scale of magnitude u:/g, and a

. pressure scale of wmagnitude pUz, where U, g8 and p are the
actual values of these quantities. Since the wavelength of

linearised waves 1is Z'Uzlg. this means that in the precent
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non~dimensional framework, their length is 2¥, as is clear from

v

the term in cos x in (2.2).

—

o
\;_
‘Cj{ In fact, since f(x) tends to zero at infinity, as X - +a
’\
-~ we have
oy
}‘_:. x
f:* n(x) - -P(-=) + l P'(€)[2 cos (x-€)-8]dE
o --
0
aw
LA -
- =P(+o) +2] P'(€)cos(x-¢€)dE. (2.4)

s
P

.
<&

4

.
‘o

However, from now on we assume (without loss of generality)

'

{; .
o

¥

that P(+») = 0, i1.e. that the pressure is asllowed to return to
atmospheric far downstream, and hence that the mean free-

surface level downstream is defined to be the level at which

e
% el a
PR I I A |

y = 0. In that case, (2.4) reduces to

)
L] ..l
‘s

-

- -»
. n(x) - [2] P'(€)cos € d€) cos x + (2] P'(€)sin € d€] ein x

’

N .
ﬂ ; i.e¢. there is a wave at x = +o, whose magnitude and phsse are
determined by the pressure distribution P(x). This wave

<. disappears if and only if

»
- l P'(x)cos x dx = O (2.6)

-
Y and

MY - .
\:.: l P'(x) sin x dx = O. (2.7)

0 Any pressure distibrution P(x) satisfying (2.6) and (2.7) ¥ill

* L
O\ be describad as "wave-less”.
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For example, suppose P(x) is estep-wise constant, i.e.

P(x) = Py = constant, x4., < x < x4 (2.8)

for sowme set of points X4 §~0.1,2,...,N, where we may take
Xg " -w and xy = 0. Then the pressure gradient is a

collection of Dirac 8-functions, i.e.
N
P'(x) = ¢ (PJ+‘-PJ)6(x-xJ) (2.9)
3=

vhere PyNy; = 0. Now (2.6) and (2.7) require

N N
T (Pje;~- Pylcos x4 = (Pyo, = Py)ein x4 = 0. (2.10)
bLE! =

We can fix one of the constants Py, eay P;; there are then
(2N=2) free parameters Pae Pysece PNy 8nd Xy, Xz 4000, ,XNuy,
and just two equations restricting them. Clearly there is no
wave-less pressure 1{f ﬁ - 1, Thie simply confirms that a
(single) step-function pressure always generates s trailing

wave of non-zero amplitude.

If N = 2, there are as many equations as unknowns and a

wave-less pressure is possible. The specific form taken by
(2.10) is
(Pg-P')co. Xy = Pl - (P:-P‘)ltl\ Xy = 0 (2.11)

Thus, Xy, ®» -v, ~29, =3¥,..., s0 that the step length must be
an integer multiple of . If that integer is odd, then P, = 0
sand P, = P;/2, i1.e. the pressure P(x) consists of a jump at
xR ® x, to exactly half of its (non-zero) upstresam value,

followed by a jump to zero at the origin. In practice, we are




mainly interested in the shortest step, with Xy ® -w, which
corrcipond- to a8 Froude number (based on the step length) of

#=3/2 o .364.

on the other hand, the solutions with Xy = =-2¢,
-4y, ~6¥,... must have P, = 0, {.e. correspond to a pressure
distribution that vanishes outside the finite segment
%y, € x < 0 and is constant within that segment. The existence
of such simple finite wave-less pressures is well known; for
example, the most important case X; = -2¢, with a Froude

number of .399, was discussed by Lamb (6] and used by Schwart:

l’lo

The absence of waves in this case is easy to understand
intuitively, since there 1is exactly one wavelength (27¥)
betwveen beginning and end of the pressure distribution. Since
these ends generate exactly equal and opposite vaves,
destructive interference is possible. In fact, a sesimilar
argument also explains the semi-infinite case x, = -v, where
the step length is exactly half a wavelength. Now, in view of
the fact that the pressure steps down by a factor of 1/2 at
both ends, the waves produced by the ends are exsactly equal in
magnitude and sign, but now are shifted by a half-wavelength,

o0 that again destructive interference occurs.

In summary, pressure distridbutions consisting of just two

distinct steps can generate wave-lass free surfaces, providing

the distance between the steps is an integer multiple of the *
half-vavelength #. The "shortest” such wave-less presesure has

a step-~length of ¢, 1.e. one half-wavelength, and corresponds

T a ¥ o ™y T IR/
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to a semi~-infinite pressure distribution with constant
arbitrary upstream pressure, and a atep to exactly half the
upetresam pressure. The case where the step length is 2», i.e.
a full wavelength, corresponds to zero upstream pressure, and

constant arbitrary pressure on the step.

The actual free-surface shape generated by these two
pressures 1is illustrated in Figures 2.1 and 2.2 respectively.
In the general case where the pressure is given by (2.8), the

free~-surface elevation 1is given by (2.1) as

n(x) = -P,+ : (Pj...‘-PJ)K(X-Xj) (2.12)
J=1
Since the basic kernel function K is eaesily computed, this
provides & rapid method for evaluating linearised solutions,
not only for the present case where P(x) is exactly a set of N
eteps, with N emall, but algo for quite general P(x), as a
numerical procedure in which (2.8) is an approximation for
large N. Note, however, that wherever P(x) possesses a finite
ju-p. discontinuity, n(x) 1ie finite but its derivative, the
free-surface slope n'(x) is infinite. Specifically, if P(x)

jumps by AP at x = 0, then near x = 0 we have
AP
n(x) » n(0) = T % logix| + 0(x) (2.13)
Figures 2.1 and 2.2 show this phenomenon as locally-vertical

free surfaces at the points where the pressure jumps.

If we now turn to the case N = 3, since there are now two
more parameters than equations, we may expect to obtain a

2-parameter continuous family of wave-less solutions.

Equations (2.10) now stacte




TN

linearized free surface n(x) generated by a wave-less pressure
that jumps from 1 to 4y at x = -7, then from ) to 0 at x = 0.

P(x)
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Linearized free surface n(x) generated by a wave-less step
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~ - -t - -

(Py-P,)cos x; + (Py~P,;)cos x; -~ Py = O

and
(Py=P,)sin x,+ (Py~P;)sin x, = O (2.14)

which may be ‘'solved’' for any two of P,, P,, P,, given the
third, and the step locations X1, X2. This solution may be

expressed in the form
Py :Py:Py mges ~g,:8+8,:8 (2.1%)
where sssin(xy;-x;), s ;=sin(x,) and se,=sin(x;).

The most useful examples with N = 3 are those with
-9 < x;, < 0, since a step length less than r was not achievabdble
for N = 2. Figure 2.3 shows (solid curve) a typical example in
this category, namely that for x, = -1, x, = =1/2. The
pressure steps are in the ratios Py :P;:P;®1:-3.08:4.08 in this
exasple. If we keep x, = -1, and vary x? in the range

=1 < x5 < 0, the free-surface shape does not change very much.

It is interesting to consider the effect of making x, even
closer to zero. Then we find that (with P, normalised to
ungty) P; beacomes large snd negative, while P, becomes large
and positive, comparable with -P,. This behaviour corresponds
to & combination of & step function and & dipole in pressure,

i.e. to
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P(x) = 1-H(x) ~8'(x) (2.16)

wvhere H(x) is the unit step function. Thus, from (2.1), we

‘
Ll
~
o

~
R
b2
’l

]

have

n(x) = -1 - R(x) - K"(x) (2.17)
w =1 «(2co08 x=-1) = (~2cosx)

- 0. 88 X - ‘o

O0f course, this limiting solution is very singular at the

origin, .and for example the free-surface elevation becomes

unbounded 1like 1/x, but it indicates the possibility of -
wave-less pressure distributions whose domain of variation is

of vanishingly-small length. _ ﬁ

The logarithmic singularity (2.13) in the free-surface
slope caused by jumps in pressure is barely acceptable in the

l1inearized theory, and becomes (as wve shall see) quite

unacceptable if the analysis is extended to include
non-linearity. It is therefore desirable to consider families
of continuous pressure distributions. The simplest such

example is & linear “"pressure ramp"

" » o < x £ Xy,
PC(x) = {Pix/xys . % <x <O
0 x>0 . (2.18)

i

ﬁ.ttafio-(2.7) if X, ® =29, by, -6¥,.0... Figure 2.4 shows

the free-surface shape at Xy, @ -2%, This curve was in fact
computed using (2.12) with N = 40, which gives 13-4 figure

accuracy.
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Pig. 2.4

Linesrized free surface n(x) genersted by a continuous wave-less

pressure P(x)

in the form of a linear ramp over

-15-

-2 < x < 0.
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A useful one~-parameter family of continuous pressures i3

given by
P‘ -.<x<x.
P(x) = | P, 2= & P ein 27X, x, < x €0
Xy X3
] N x >0

wvhich reduces to (2.18) if P, = 0, but 1is wave-less for all

2erp L [22)7
P, Xy

(2.19)
Figure 2.3 shows (dashed curve) results st x, = =1. The solid
and dashed curves of this figure contrast discontinuous and

continuous wave-less pressures for the same value of X,;, and

'clo.rly the emocother pressure gives a smoother but othervise

quite similar free surface.

If one demands an even greater degree of smoothness, then

for example

’l . - € X < Ry
P(x) = P.oln'[%ET] sy X3 € x <O
o . x >0 (2.20)

ie a continuous presaure distribution with continuous

derivative, and 1is wvave-less 1f x,® -3¢, -Svw, seese Figure

2.3 shows results at x; o« .3g,

[ %
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s Fig. 2.5

Linearized free surface n(x) generated by a wave-less pressure
* . P(x) that is continuous and has continuous first derivative,
varying sinusoidally on the interval -3m < x < 0.
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3. Some properties and interpretations.

The linesrised free-surface flow produced by a wave-less
pressure distribution has some interesting special properties.
In particular, symmetrical wvave-less pressures produce
symmetrical flows, in the following sense. Suppose x = xg is &

point of symmetry of a wave-less pressure P(x), such that
P(xg + X) = P(xq -~ X) (3.1)

for all X. Then x = xg is also a point of symmetry of the

free-surface elevation n(x) produced by this pressure, i.e.
n({xg + X) = n(xg - X) (3.2)

Figure 2.2 illustrates this property, with xg = -v as the

point of symmetry.

A similar result applies to what we might call “anti-
sysmetric” wave-less prassure distributions, but 1is most
directly expressed in terms of derivatives. That is, 1f x = x4
1is & point of symmetry of the pressure gradient, such that

P'(xg + X) = P'(xq = X) (3.3)

for all X, then it is also a point of symmetry of the free-

surface slope, 1.0.

1\'(!‘ + X) = '\'(8. - X) . (3.4)
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Upon integration, we can re-phrase this anti-symmetry property

to state that

P(xg + X) = P(xg) ®» P(xg) - P(xy - X) (3.5)

implies that

nixg + X) = n(xg) = n(xg) = nixg- X) (3.6)

Figures 2.1, 2.3, 2.4 and 2.5 a1l tllustrate this property, for

various values of xg4.

It is {important to emphasize that these properties hold
only for wave-~less pressure distributions. It is obvious that
solutions with waves cannot obey ohch symmetry conditions,
since the radiation condition demands that the waves occur only
a4t x ® 4o, and not at x @ -e. The symmetry results can bde
proved by pottng that K(x) in (2.2) can be oplit into even and
odd parte, but that the even part (cos x - 1/2) contributes at
most & constant to n, for wave-less pressures P(x). Oon the
other hand, the odd part of K(x) nessarily generates (for any

P(x)) solutions n(x) satisfying the symmetry conditions.

Another almost self-qvident property of wave-less
pressures 1 that they arvre reversible. That 1s, if P(x)
generates n(x), then P(-x) generates n(-x). In effect, we have
simply reversed the direction of the free stream at infinity,

and, with {t, the whole flow.

Again, this property can be proved formally for the

linearised solution by separating K(x) into even and odd parts.
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It ie obviously false for wave~-generating pressures, since the
vaves due to P(x) must lie downstream, which means that those
due to P(-x) would lie upstream if reversidbility held. In
fact, this reversibility property holds not only for weak
pressures P(x) for which linearisation is justified, but also

in the fully-non-linear case.

Once 8 flow due to a given pressure distribution P(x) has
been computed, it wmay be re-interpreted as that produced in the
presence of a certsin body. That 1is, the computed curve
Yy = n(x) is a streamline, and part or all of it may be replaced
by & fixed impermeable boundary. In particular, suppose
P(x) = 0 for x < x;, and for x > xg, but P(x) »w 0 for
xg € x < xp. Then the flow generated by this P(x) is the same
as that past a body with the equation y = n(x), xp < x < xg ,
with & free osurface at atmospheric pressure in x < xp and
X > xg. This interpretation holds whether or not the pressure

P(x) is wave-less.

In this way we can provide an .inverse solution to problems
involving ship-like bodies. Examples such as that in Fig. 2.2
where P(x) is non-zero only over a finite segment appear at
firet glance to be the most relevant. However, pressures P(x)
that are non~zero on a lo;t-inftnt:c segment, such as that used
for Fig.2.1, generate flows that can be interpreted directly as
those near the stern of a ship. In general, such stern flows
generate downstream wvaves., However, in the special case wvhere
P(x) is wave-less, the ahove reversibility property applies,

and asllows an addittional interpretation as a flow near the bow

of a ship.
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Of course, no guarantee is available that the "body" shapes
y = n(x) so generated will be particularly ship-like, and
finite-length bodies, like that of Fig. 2.2 tend to be very far
from ship-like. On the other hand, the semi-infinite body
shown in (for example) Fig. 2.5 {s not unlike a bulbous bdow,
and the inverse technique appesrs to be quite prowmising {f

confined to local flow properties at the bow or stern.

In making this inverse interpretation of the linearised
results of Section 2, we must " not forget that these are
lpproxtn.tton-..and are formally only valid when P(x) is so
weak that the free-surface slope n'(x) is everywhere small. It
y » n(x) 1s now interpreted as the surface equation of a
ship-like body, this places severe restrictions on the
applicability of the results. Fortunately, the inverse
interpretation is not restricted to linearised solutions, and
ve now turn our attention to the full non-linear problem, whose

solutione allow finite n'(x), and hence finite slopes in the

inversely-generated body suriface.
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If @ is a measure of the size of the pressure P(x), then
the results of Section 2 apply in the limit as e - 0, and
provide (e) estimates of the free-surface shape, i.e. neglect
all terms of 0(e?) gnd smaller. It is now natural to seek an
expansion in powers of e, commencing with the O0(e) terms

already worked out.

However, for a number of reasons, it 1is inconvenient
(sometimes impossible) to carry out this analysis for a
pressure P that {s given as a function of the space variable
x. Indeed, if the pressure is large enough, there may exist no
such single-valued functional representation, since there may
be more than one point on the free surface corresponding to a
given value of x. It is preferable to represent the pressure
P a3 & function of a variable that changes in a strictly

monotone-increasing manner along the free surface.

Such a variable is the velocity potential o. That 1is, we
now suppose that the free-surface pressure P(e) is a given
function of e. In the present non-dimensionalization, the
undisturbed stream corresponds to e = x, so that this
r.ﬁrclon:.tton i{e identical, with P(e) » P(x), to tﬁ.t used in
Section 2, to the order of approximation being used in that
section. All results of Section 2 can now be carried over,

with x replaced by o.

We now consider O(e? and higher perturbations. At the
)

same time, 1t 1is convenient to suppose that the pressure P
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itself can be modified as we expand to esuch higher orders.

Thus wve write
P(e) = eP, (o) +e?P (o) + a’P; (o) *.... (4.1)

Since ¢ was scaled to unity in Section 2, in fact the results

of that section correspond to P;(e) m P(x).

If 2 o x+iy, and f = ¢ + iv is the complex velocity

potential, then we consider z = z(f) and expand
2(f) o £ + az,(f) + a?2,(f) + a%24(f) +.... (4.2)

The free surface corresponds to v = 0, and the (scaled) dynamic

free-surface condition is (with g = 1, U= 1, p = 1)
P+ (2'(E)|2/2 + y = 12 (4.3)

Upon substitution of (4.1) and (4.2) and collecting powers of

a, we find that for all 3J=1,2,3..c00c00
P,#pj - Xj' +yy = 0 (4.4)

where all quantities are evaluated on v » 0, the prime denotes

3/ 36, and
p1 = 0 (4.%)
pr = 3x,' by, (4.6)
2 2
Ps = 3%, 'x;" -y, 'ys' ¢ 2xly, "7 - 2x, 0 (4.7)

Pa ® 3IXy; %y =y, ¥y + }*:
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etc. Thus, at all orders of approximation j, we have the same
type of boundary condition (4.4) the only complication at
higher order being the manner in which the "equivalent linear”
pressure Pj is determined from earlier terms in the

expansion.

For 3§ = 1, (4.4) and (4.35) are equivalent to the usual
linearized free-surface boundary condition, and all results of
Section 2 are available to yield solutions of this problem.

Note that in the present notation,
yi(e) = n(e) : (4.9)

In fact, we neead no more information from Section 2 than n(x)

(wvith x replaced by o), since (4.4) and (4.9) imply
xy'(e) = Py(0) + n(e) (4.10)

If we turn to the 2nd-order terms j = 2, 1t is immediately
appsrent that step-function discontinuities in the input P, (e)
are unacceptable, since they lead to (c.£.(2.13))
lo..rithnieally-lnfintte' free~surface slope,and via (4.6) to
"log squared” singularities in the 2nd-order pressure p,, and
hence to an unbounded 2nd-order free-surface displacement y,.
This problem compounds itself at higher order, and one must

suspect that no solution exists if P(o) possesses a step

discontinuity.
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This 1is also a conclusion one 1e drawn to by direct
consideration of the non-linear boundary condition (4.3),
irrespective of any form of asymptotic expansion such as (4.2),
and .ppea?u to be in conflict with the fact that Schwartz (7]
claims to have found & non-linear numerical solution for such a
pressure distribution. However, it is probable that Schwartz's
numerical solution 1s not sufficiently accurate near the

singular points to display this difficulty.

In any case, we choose ¢to require that P (o) be a
continuous function, typicelly (2.18), (2.19) etc. For
example, if P, is continuous but its derivative P;' possesses a
step-function discontinuity, then y,' = n,;' {is bounded and
continuous, and hence s0 is the second-order pressure p;. We
therefore expect no troudble at any order of approximation, and
by implication, expect that the full non-linear problem does

have & solution.

The symmetry properties of the linesr wave-less solutions
&8s discussed in Section 3, now Play an important role in the
non-linear theory. Suppose for example that P,(¢) is wave-
less and symmetric sbout some point ¢ = ¢4. Then, as we have
seen, 80 is n(e) = y,(e), and thus so 19 x;'(e). Hence
P2 - P, 1is symmetric, and a symmetric second-order solution
exists if the second-order input P, is taken as symmetric. A
eimilar conclusion applies at all higher orders, and wve may
therefore expect to generate a fully non-linear symmetric
solution. Note that in such a case P, is not arbitrary and
cannot be set to zero; it is needed in order to cancel the

waves at second order.
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The case of "anti-symmetric” preesures is somewvhat more
sy interesting. Now if the pressure gradient P,' 1is sesymmetric,
then so is the free~-surface slope n' = y,', Thus (3.6) implies
N that p; ~ P, is symmetric, and we can (indeed must) use a
.3}. symmetric 2nd~order input P,. Thus, at 2nd-order, the anti-
syametry property of the 1input pressure {s necessarily

destroyed, and it appears that there exists no wvave-less

ko
o
1};} non-linear anti-symmetric pressure distribution.
ASRS
VAN
y For example, suppose
1N
ey
) < 1, - < ¢ < =2%
b2 Py (o) = -e/2vw, -27 < 0 <O
" - 0. e > 0 (4.11)
B
ﬁfﬁ This is just the “"ramp"” pressure of (2.18), expressed in terms
<
a:a: of ¢ 1instead of x, and evaluated in the wvave-less case
-'_..-"
12}' Xy = =2w. Note that this pressure 1is anti-symmetric about
T
-'.4'_
@ = =y. This pressure can be used to compute x,(e¢) and y, (o),
A}
q?u the latter being as plotted for n(x) in Figure 2.6. Then we
N
:a_. can easily compute p(e) from (4.6), and this is given 1in
e
s:q Figure 4.!, which verifies that P ;(e) 1ie¢ symmetric about
é @ ®» =g, The complete second-order problem now has been reduced
13
N %\ to & linear problem, in vwhich the free surface is disturbed by
PN
. : a combination of the input second-order pressure P,;(¢), (which
sh . may or may not be present) and the computed pressure p;(e) as

i

displayed in Figure 4.1, which must always be present.
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If there is no input second-order pressure, f{.e. 1f the

[V A

pressure is given by a eimple ramp to at least 0(ea?’) accuracy,

then vaves must be generated. That is, by itself, the pressure

p2(e) of Figure 4.1 does generate waves. 1f we demand a
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Fig. 4.1

(Y Thae solid curve is the second-order pressure p_($) corresponding
& to an input first-order pressure equivalent to the linear ramp of
N : Pig. 2.4. The dashed curve is a wave-less analytic approximation

to the solid curve for -2mw < ¢ < 0, given by equation (4.15).
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vave~less solution at second order, we Bust incorporate some
input pressure P,(e) at second order, of gsuch & nature and

msagnitude as to cancel the waves .cncritod by pai(e). The

o,

eymmetry principle demands that this input pressure must be

.o

symmetric about ¢ = -v, and there are many choices for P,(e)

« v .

that sre satifactory.

D LS 4

A rather attractive possibility ies to choose

sl

’.(.) [ ] ‘P;(.) . (6.12)

E

in which case there is no pressure distribution at all at
2nd~-order, and hence no second-order flow. That is, without

further ado, we can assert that an input pressure

P(o) = aP, (o) - a?p;(0) (6.13)

vhere P, (¢) 19 given by (4.11) and pp(e) by Figure 4.1 produces

a v.yo-l..l flow field.

s = gx,(f) + 0(e?) (6.14)

One difficulty of the assumption (4.12) 4is that since
P2(e) #» 0 in ¢ > 0, the ssme applies to P (e). That is, there
i9 no true free surface on which p = 0, the input pressure

being non-zero everyvhere.

Alternatively, s good choice for P,(e) is one that, while .
temaining zero for ¢ > 0 and generating exactly equal and

opposite waves to p,;, also cancels p;(e) for -29 < ¢ < 0O, to as




grest an extent as possible. One such choice, found by trial

( and orr&r,io 3
)
o - 0.118 sin 3¢/2 4+ 0.09 sin’e, -2% < o <O.
., ' -P'(.) -
‘_ o N otherwvise
:ft': (4.1%)

which 1is shown (dashed) in Figure 4.1. Note that the first q
;;; term of (4.1%) generates the waves to cancel those of p;; the K
‘:% second term is itself wave-less, and the coefficient 0.09 is

simply chosen to match -P2 to p; as closely as possible. It 1is

N novw quite straight-forward to ' compute the free-surface
N

“«

i}; elevation y, produced by the everywhere-small residual pressure
ft Pa+p,;, and thie 1is shown in Figure 4.2. Note the small
e absolute size of vy,, which suggests that these results may
CAL

~

‘jq retain validity up to quite large values of s.

53

'.‘.1
,;s:
v The actual free-surface shape in physicsl-space
A

;q coordinates (x,y), is given by

o

4

T,

‘i{ x = ¢ + ax (0) + 0(e?)

i y = ey (e) + ey, (e) + 0(e?). (4.16)
ay

:'::4

:}f To obtain a result for y = y(x), consistently with error 0(e?),
;Z wve can treat (4.16) as a pair of parametric equations, with o
5 a8 a parameter. The small magnitude of y,;(e¢) in the example of
{f Figure 4.2 means that (for moderate ¢), the y-coordinate of the
o~
v5¥ free surface is little changed by second-order effects in this

Yy
'.‘.l
L

example. However, the 0(«) correction to the x-coordinate is

AL

not so small, and represents the most significant non-linear

modification. We return to this question in the following

¥ v ww
e
X

A
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S. Strong Pressures N
’ ~

E

An exact inverse method of solution of the present class of N

A

problem is alwvayes availahle. That is, given sny function z(f) q
that 1is anslytic in the lower half f-plane, we can use (3.3) i
directly to compute the free-surface pressure P(o). One way to ﬂ

do this is to combine 8 uniform stream with singulsrities sbove

the free surface.

For example, suppose

48+641

fre-121 (3.1)

2(f) ® £ + 12 log(f-41) +

1f linearisation (i.e. f & z) wWere legitimate, (5.1) could be
interpreted as & stream plus & sink at (0,4) and a dipole at
(=4,12). However, the size of the coefficients in (35.1) makes
linearisation of doubtful value, even for qualitative purposes.
Figure 5.1 shows the streamline x+iy = z(0+10) computed from
(%.1). Since we hcvolocnlcd 8 " U= 1, and the "draft" of the
shape shown in Figure %.1 is 12%, the draft-based Froude number
for this flow 1s (12#¢)-'/2 o .,163. The shape shown is quite

like & typical bow.

The pressure P (obtainable from (3.3)) is almost
hydrostatic, and is significant only for y < O. Indeed, if
y > 0, then p/P, < .008, wvhere P, is the pressure at x = -o.
The coefficients and singularity locations were in fact chosen
by trial and error so that this would be so. Many other
choices of the parameters in (35.1) led to a similar property,
and shapes having swmall pressure for sufficiently large ¢ or «x

can ba constructed st any draft-based Froude number. However,
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X this procedure seems hard to carry through in any systematic
o

( manner, and we turn to an alternative procedure based on the

linearized solution.

Flows satisfying the exact free-surface condition (3.3) can
be constructed in a systematic manner by making use of the
results already obtained in the previous sections. For

example, suppose we set

z » f + qz,(f) ' (%.2)

«

"..’
ol
T
b
gﬁ; (exactly), where 2,(f) is the linear solution corresponding to
T some input "seed" pressure P,(¢). Then the flow (5.2) can be
?ﬁ? considered to have been generated by the free-surface pressure
LAY
EA
N P(e) given exactly by
WA
> 1
& , P(e) = 3 - ey, (o) - ; {C1 + ex,'(e))%+ (ay,'(e))?]"?
a (5.3)
o
)
)
;\; Note that in order to generaste the free-surface shape and
Wy
= pressure P, we need only compute the linearised free-surface
), elevation n(x) with e=1, since then y,;(e) = n(e), and
Ny
f.:‘
?i; x3'Ce) = P(0)+n(0). We can then compute very rapidly a
T
,?4 complete family of exact non-linear solutions, by varying the
- .-plitudc parsameter e. The free-surface shape btc given
{ﬂ: parametrically by
&
AR
s x =0+ efS (PiCo)enCer] do

. ' y = en(e) (3.4)

A® @ varies, the y-coordinate simply scales in proportion, but

the sctual shape of the free-surface distorts, because of the

)
X8
3 non-proportional dependence of x on e.
o
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Figure 3.2 shows free-surface shapes computed in thie way
for various values of ¢, with the seed pressure P, (o) given by
the simple ramp (4.11)., These curves are drawn true to scale, :
and their non-linearity 1s confined by the 1large slopes. :

'
However, the curve shown for € = 1| does not display large ;
slopes, and hence it is almost the same as Figure 2.4, since I
linearization is not too much in error. Ae @ increases, the :
"downward bulbd”" at ¢ = -5.3 becomes sharper, vhereas the "upwrd
buld™ at ¢ = -1 (which 1s in Figure 2.4 exactly a reversed

image of the downward buldb) is smoothed out.

Eventusally, at sbout € = 3.1, the downward bulb sharpens
into & cusp, and for & values greater than this, non-physical
looped shapes are generated. The distorted varistion im the
x-coordinate now allows a non-single-valued y = y(x) free
surface, containing a point where the free surface ie¢ vertical,
and this actually happens for e« values near to 3 in this

example.

For each separate valuge of e, we must compute the actual
free-surface pressure P(e) by (3.3). Thus every curve shown in
Figure 3.2 corresponds to a different P(e). As the downward
bulb becomes sharper, the fluid velocity 1increases near the
corner, and hence the pressure P(¢e) decreases, until at the
value of e wvhere the body 1is cusped, P « -o at the cusp.
Figure 5.3 (solid curves) repeats the free-surface shape of
rig. 3.2 at e = 2, and showse the corresponding pressure P,

plotted as a function of x.
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Big. 8.2

A set of exact non-linesr streamlines ¥ = 0 for flows seeded by
the linear ramp pressure of Fig. 2.4, for various values of a
parameter € measuring the magnitude of the input pressure.
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Fig. S.3

The solid curves show the output pressure and (repested) streamline
shape for the curve € = 2 of Fig. 5.2. The dashed curve corresponds
to & similar computation, but with both first- and second-order seed
pressures, the latter being as in Fig. 4.1.

SO
AT RSP




R R SR R R A AR AT SR G S LS NEARAC AN PO A A ORI R RO S iy 4 A R h i Ot S

..

lx."1.l
Vo
el

.
N .
LIV

v e v o
‘.

In fact it is interesting to note that the present exact f
procedure generates almost the same results as the 2nd-order =3
(

R

procedure (4.16). The only difference between (4.16) and (5.4)

"'

alala

is the-term e?y,(o¢) in the former, and we have indicated in

2

Section 4 that this term can be made quite small. That is, the
second-order accurate free surface computed at e = 2 using
(4.16), with P, given by (4.11) and P, by (4.13), is almost
indistinguishable from that shown in Figure 5.3. However, the
pressure PF(o) = eP, + 6?P, now vanishes exactly for all o > O,

so that there is a true free-surface present.

The present exact inverse method can be extended to take
account of both 1at and 2nd-order seed pressure. That 1is,

suppose instead of (S.2) we set
g = f + @z,(f) + a22,(f) (5.9%)
where 2,(f) and z2,(f) are lst and 2nd-order solutions generated

by P,(e) and P,;(e) respectively. Then this is also the exact

solution genersted by the pressure

PCe) = % cey (8) - e?y (o)

- ;kl-nx, '(o)+eix,' (o)) +(ay, ' (o)+ely, '(0))2) !
(5.6)
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Figure 3.3 aleo shows (dashed) computations using (3.5), (5.6),

for e« = 2, with P, given by (4.11) and P, by (4.135). The

58
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dashed and soltid curves are generally close, although the

s

dashed downward buld is significantly sharper, and hence the

pressure minimum 19 stronger.
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However, the most important change is not easy to see on g

the scale of tbe figure, and this is the fact cthat there is a _
!

range (x > -1.4) over which the pressure P computed from (3%.6), ' ;
satisfies |P} < 0.0l1. In the same range x > =1.4, the solid E
curve still has only {P| < 0.06. That is, this portion of the E
dashed streamline is much more nearly "freea” than the solid ﬁ
one. Clearly one could continue this process to even higher S

orders, generating each tiwme an exact solution, with the

;

property that, as the order of the process increases, P - 0

for ¢ > 0.

6. Conclusion

We have demonstrated in this paper, both by 1linear and
non-linear methods, some families of free-surface pressure
distributions that do not generate waves. since these
wave-less flows can be reversed in direction, they alse

generate candidate shapes for eplash-less bows.
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